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1 Introduction

The three-dimensional N' = 6 U(N) x U(N) Chern-Simons matter theories with level k can
be described as the low energy limit of N M2-branes at C*/Z;, singularity [1]. For k = 1,2,
the full ' = 8 supersymmetry is preserved while for k > 2, the supersymmetry is broken
to N = 6. The RG flow between the UV fixed point and the IR fixed point of the three-
dimensional field theory can be found from gauged N = 8 supergravity in four-dimensions
via AdS/CFT correspondence [2]. The holographic RG flow equations connecting N' = 8
SO(8) fixed point to N = 2 SU(3) x U(1) fixed point have been found in [3, 4] while those
from N = 8 SO(8) fixed point to N' = 1 G fixed point also have been studied in [4-6].
The M-theory lifts of these RG flows have been constructed in [5, 7].

The mass deformed U(2) x U(2) Chern-Simons matter theory with level k¥ = 1 or
k = 2 preserving global SU(3) x U(1)r symmetry has been studied in [8-11] while the
mass deformation for this theory preserving Go symmetry has been described in [12]. The
nonsupersymmetric RG flow equations preserving SO(7)* symmetry have been discussed
in [13]. The holographic RG flow equations connecting N’ =1 G5 fixed point to N = 2
SU(3) x U(1)g fixed point have been found in [14]. Moreover, the N' = 4 and N = 8
RG flows have been studied in [15]. Recently, further developments on the gauged N' = 8
supergravity in four-dimensions have been done in [16, 17].

In order to understand the above N = 1 mass-deformed Chern-Simons matter theory
preserving G symmetry(no R-symmetry and no chiral ring) in three-dimensions fully, the
gravity dual should be used to study this strongly coupled field theory and this is the
main feature of AdS/CFT correspondence [2]. Heidenreich [18] found the complete list
of OSp(1]4) unitary irreducible representations: the structure of A/ = 1 supermultiplets.
The even subalgebra of OSp(1]4) is the isometry algebra of AdS4. In his classification,
there exist massive supermultiplets. Then the A/ = 1 supermultiplets of gravity states
of IR theory at the first few KK levels can be classified according to the mass spectrum.



The 4-dimensional KK modes are massive AdS, scalars and the masses are determined
by the eigenvalues of the differential operator acting on 7-dimensional ellipsoid. Then it
is necessary to compute this eigenvalue equation, i.e., both the eigenfunctions and the
eigenvalues for given above 7-dimensional Laplacian.

In this paper, we compute the explicit KK spectrum of the spin-2 fields in AdS4 by
following the recent work of [11]. In an 11-dimensional theory, the equations for the metric
perturbations leads to a minimally coupled scalar equation. We obtain all the KK modes
that are polynomials in the eight variables parametrizing the deformed R®. The squared-
mass terms in AdSy for all the modes are quadratic of the G quantum number and the KK
excitation number. We describe the corresponding AN/ = 1 dual SCFT operator depending
on the two quantum numbers.

In section 2, we review the 11-dimensional background discovered in [5]. In section
3, we solve the minimally coupled scalar equation in this background and its spectrum is
determined. We match the quantum numbers of the operators with those of the operators
in Chern-Simons matter theory with sixth order superpotential. In section 5, we summarize
the main results of this paper and make some comments on the future directions.

2 An N = 1 supersymmetric Gs-invariant flow in M-theory: review

Let us review the 11-dimensional uplift of the supergravity background with global Go
symmetry found in [19] as a nontrivial extremum of the gauged N/ = 8 supergravity in
4-dimensions. Our notation is as follows: the 11-dimensional coordinates with indices
M, N,--- are decomposed into 4-dimensional spacetime coordinates x* with indices u, v, - - -
and 7-dimensional internal space coordinates y"” with indices m,n,---. Denoting the 11-
dimensional metric as gpry with the convention (—, +, - -+, 4) and the antisymmetric tensor
fields as Fyyvpg = 400 Anpg), the bosonic Einstein-Maxwell field equations are charac-
terized by [20]

1 1
Ry = 3 FuporF POl — %51\N4 FpoprsFPOR,
1
vy FMNPQ _ —e= E NPQRSTUVWXY oo (2.1)

where the covariant derivative Vj; on FMNPQ in the second equation of (2.1) is given
by E~10y (EFMNPQ) together with elfbein determinant E = /—g;1. The 11-dimensional
epsilon tensor ey pgorsTUVw xy With lower indices is purely numerical. The 11-dimensional
geometry is a warped product of AdS; and the 7-dimensional ellipsoid. We refer the reader
to [5, 21] for a derivation of the formula in this section.

The gauged N = 8 supergravity theory has self-interaction of a single massless N’ = 8
supermultiplet of spins (2, %,1, %,0*,0*) with local SO(8) and local SU(8) invariance.
There exists a non-trivial effective potential for the scalars that is proportional to the square
of the SO(8) gauge coupling g. The 70 real, physical scalars characterized by (0%,07) of
N = 8 supergravity parametrize the coset space E7(7)/ SU(8) and they are described by
an element V(z) of the fundamental 56-dimensional representation of Er(7). Any ground

state leaving the symmetry unbroken is necessarily AdS, space with a cosmological constant



proportional to g>. Turning on the scalar fields proportional to the self-dual tensor C JIFJK Lof
SO(8) yields an SO(7)*-invariant vacuum while turning on pseudo-scalar fields proportional
to the anti-self-dual tensor CT/KL of SO(8) yields SO(7)~-invariant vacuum. Both SO(7)*
vacua are nonsupersymmetric. However, simultaneously turning on both scalar and pseudo-
scalar fields proportional to CJIFJ KL and CI/KL respectively, one obtains Ga-invariant
vacuum with N' = 1 supersymmetry [22]. The most general vev of 56-bein preserving
Go-invariance can be parametrized by

A IJKL | IJKL
= ——(cosa C +isina CZ . 2.2
PrIKL 52 ( i ) (2.2)
The two vevs (A, ) in (2.2) are given by functions of the AdS4 radial coordinate
r = 2. The metric formula of [22] generates the 7-dimensional metric from the two input
data of AdSy vevs (A, «). The Ga-invariant RG flow is a trajectory in (A, )-plane and is
parametrized by the AdS, radial coordinate r. Instead of using (A, ), it is convenient to

use (a,b) defined by [5]

0= h(%) +cosa sinh(%) ,
b = cosh( =) — cosarsiun( ). (2.3

Let us introduce the standard metric of a 7-dimensional ellipsoid. Using the diagonal
matrix Qp given by [5, 22]
@

2
Qap = diag <1,151,151’151’ b2> ) (24)

the 7-dimensional ellipsoidal metric with the eccentricity /1 — Z—i can be written as

2
_ 2
sy = AXAQupdX " — = (X645 dX")", (2.5)

where the R® coordinates X A(A = 1,...,8) are constrained on the unit round S7, that
is, ZgAzl(XA)2 =1, and €2 = b2 X4QpXP with (2.4) is a quadratic form on the 7-
dimensional ellipsoid. The standard metric (2.5) can be rewritten, using the explicit real-
ization between X4 and y™, in terms of the 7-dimensional coordinates y™ such that
ds3y i = & d6* + sin® 0 dQ3 (2.6)
(M~ g2 ’

where 6 = y7 is the fifth coordinate in 11-dimensions and the quadratic form ¢2 is given by
£? = a®cos® 0 + b?sin? 6, (2.7)

which turns to be 1 for the round S” with (a,b) = (1,1) which has SO(8) symmetry. For
other values of a and b, the SO(8) symmetry group is broken down generically to G3. The

metric on the round S° ~ 55(23) is denoted by d2. The geometric parameters (a, b) for the




7-dimensional ellipsoid can be identified with the two vevs (a, b) defined in (2.3). This is one
of the reasons why we have introduced (a,b) in (2.3) rather than the original vevs (A, a).
Applying the Killing vector together with the 28-beins to the metric formula [22], one
obtains the inverse metric ¢”"" including the warp factor A not yet determined. Substitu-
tion of this inverse metric into the definition of warp factor A [22] provides a self-consistent
equation for A. For the Gy-invariant RG flow, solving this equation yields the warp factor

A=ales, (2.8)

where ¢ is given by (2.7). Then we substitute this warp factor into the inverse metric to
obtain the 7-dimensional warped ellipsoidal metric as follows [5, 21]:
& :
ds? = grn(y) dy™dy"™ = VA a L <¥ df* +sin>0d02 ) = VAaL? ds%Lm, (2.9)
where one can see that the standard 7-dimensional ellipsoidal metric (2.6) is warped by
a factor vVAa. The nonlinear metric ansatz finally combines the 7-dimensional met-
ric (2.9) with the four dimensional metric with warp factor to yield the 11-dimensional

warped metric with (2.8), (2.7) and (2.9) that solves (2.1) with the appropriate 4-form
field strengths below:

ds?, = A1 (er + eQA(T)nwdm“dx”) + ds%, (2.10)

where 7 = 2% and p,v = 1,2, 3 with 7, = diag(—, +,+). The (a,b) are set to

S
B

o— L h=q /22 (2.11)

for Go-invariant IR critical point.
The 3-form gauge field with 3-dimensional M2-brane indices may be defined by [7]

Ay = =AW (r,0) €, (2.12)

where W(r,ﬂ) is a geometric superpotential [23] to be determined. The #-dependence of
W (r,0) was essential to achieve the M-theory lift of the RG flow. As performed in [24],
the Ga-covariant tensors living on the round S® can be obtained by using the imaginary

octonion basis of S¢. Thus we arrive at the most general Go-invariant ansatz [5]:
A4mn:g(r79) an7 A5mn:h(ra 0) an7 Amnp:hl(ne) Tmnp+h2(7na 0) Smnp7 (213)

where m, n, p are the S8 indices and run from 6 to 11. The almost complex structure on the
S6 is denoted by Fjy,,, which obeys F,, F nl — —5fn. The Syunp is the parallelizing torsion of
the unit round S” projected onto the S8, while the Tnnp denotes the 6-dimensional Hodge
dual of Spnp. We refer to [24] for further details about these tensors. The above ansatz
for gauge field is the most general one which preserves the Gs-invariance and is consistent
with the 11-dimensional metric (2.10).



Through the definition Fyynpg = 40 Anpg), the ansatz (2.12) generates the
field strengths

Flps = e3A(r) W (7, 0) €ups Flps = e3A(r) Wo(r,0) €pups (2.14)
while the ansatz (2.13) provides

6 ~ ~
Frnpg = 2ha(r,0) €qnpgrs ", Fsmnp = ha(r,0) Tinnp + ha(r,0) Spngp,
F4mnp = iLg(?“, (9) Tmnp + iL4(7“, 9) Smnp, F45mn = iL5(7“, (9) an, (2.15)

where the coefficient functions which depend on both r and 6 are given by [5]

W, = e 349, (63AW> , Wy = e 349, <63AW) ,
hy = dghy — 3h, hy = dgha, hs = d,hy — 3g,
iL4 == ath, iL5 == arh - (%g. (216)

The mixed field strengths F),,,5, Fimnp and Fysy,, were new. At both SO(8)-invariant UV
and Go-invariant IR critical points, the 4-dimensional spacetime becomes asymptotically
AdSy and the mixed field strengths should vanish there. In particular, the F), 5 and
Fy5mn are proportional to Wy and iL5, respectively, so that they must be subject to the
non-trivial boundary conditions: Wy = 0 and hy = 0, at both UV and IR critical points.
It was checked that the Fj,,,, goes to zero at both critical points without imposing any
boundary condition.

Applying the field strength ansatz (2.14), (2.15) and the metric (2.10) to the 11-
dimensional Maxwell equation in (2.1), we have obtained

1 -
hi = 2La 3¢ 2W,hy — 1 L?a3¢72 e 349, <a2e3A sin? 9h5) ,

1 -
hy = —2L7 1 €72 Wyhsy + 1 27349, <a263A sin? 9h5) . (2.17)

The 11-dimensional Einstein-Maxwell equations were checked from the warped met-
ric (2.10) and the field strength ansatz (2.14) and (2.15). The 11-dimensional field
equations were closed within the field strengths W, Wy, ho and hs (2.16) although they
cannot be solved separately without imposing certain ansatz for them. Solving the ansatz

one obtained
L3
hy = 7\/52 (ab—1) € %sin'0,

. b1
e 2LQ\/(a2 + 7b2()§ - 11)2 @1 et o )a Esnte, (218)

and
1
W, = 37 a® [a® cos® 0 + a®b (ab — 2) (4 + 3cos 20) + b° (Tab — 12) sin® 4],
3
2 [48(1 —ab 2 —b?) (a® + 70
Wy = _& [48(1 —ab) + (a ) (@ +75)] sin 6 cos 6. (2.19)

V(a2 + 762)2 — 112 (ab — 1)



It turned out that the solutions (2.18) and (2.19) actually consist of an exact solution to
the 11-dimensional supergravity, provided that the deformation parameters (a,b) of the
7-ellipsoid and the domain wall amplitude A(r) develop in the AdSy radial direction along
the Ga-invariant RG flow. Finally, the geometric superpotential in (2.12) yields

= _ as ([48 (1—ab) + (a*—b*) (a®+7b*)] cos? 6 + 8 (1—ab) + b* (a*+7b%)) (2.20)
- 2\/(a? + 7622 — 112 (ab — 1) -

Therefore, all the field strengths in (2.14) and (2.15) are determined via (2.18), (2.19)
and (2.17). The 3-form gauge field (2.12) is also determined via (2.20).

What is the dual gauge theory? Let us recall the U(2) x U(2) Chern-Simons matter
theory where the matter fields consist of seven flavors ®;(i = 1,2,---,7) transforming
in the adjoint with flavor symmetry Gs. There exist standard Chern-Simons terms with
levels for the gauge groups (k, —k) with k = 1,2. The ®; forms a septet 7 of the N/ =1
theory. When we turn on the mass perturbation in the gauged supergravity, the dual
theory flows from the UV to the IR. In the dual field theory, one integrates out the massive
field ®g(which is a singlet 1 of G5 with adjoint index) characterized by the superpotential
%m<1>2, at a low enough scale, and then this results in the sixth order superpotential [12].

3 KK spectrum of minimally coupled scalar

Let us assume the system that a minimally coupled scalar field is interacting with the
gravitational field. The action for a minimally coupled scalar field in the background
which is a warped product of AdS; and 7-dimensional ellipsoid is given by [11]

S = /dllx\/—_g [—%(0@2} : (3.1)
The equation of motion from this action (3.1) is given by
O¢ =0, (3.2)
where [ is the 11-dimensional Laplacian. Using the separation of variables
¢ = (M, )Y (y™), (3-3)
and substituting (3.3) into (3.2), one writes (3.2) as
Y (y"™)O4®(a,r) + (2, r) LY (y™) = 0, (3.4)

where [Jy denotes the AdS; Laplacian and £ denotes a differential operator acting on
7-dimensional ellipsoid and is given by

|

A1 A~

c v (V=g g1 o) =
\/%M( 911 911 N)

O (a3 LA Ygrgino,) . (35)

$



where g7 and gil, are given by the metrics (2.5) and (2.10) respectively. In particular,
the 7-dimensional metric is given by

12+cw) 0 0 0 0 0 0
0 sgsg. 0 0 0 0 0
0 0 §s3s3 s 0 0 0 0
Jyn = 0 0 0 i 3331336 lcals§s§1336 %calsgsglsze 0|, (3.6)
0 0 0 ic 53531536 }1 353183 %83831836 0
0 0 0 %c 53531536 %53531836 53536 0
0 0 0 0 0 0 sz,
where we use the simplified notations cgy = cos20 and sy = sinf and so on. Let us

introduce the angular coordinates y™ = (0,601, a1, a9, a3, 05,0s) [5] parametrizing the S”
inside R® with Zizl(X 4)2 = 1 where the relation to the rectangular coordinates is

1 i .
X!+ iX? = sin 6 sin O sin 6; cos (5(11) ez (02tas)eifs

1 i
X3 +iX?* = sin 0 sin g sin 6; sin <§a1> o~ 3(a2—as) e

X%+ iX®% = sin 6 sin O cos 61"
X7 = sin 6 cos g,

X8 = cosé. (3.7)

This is R® embedding of 87 with SO (3) base and the relation to the Hopf fibration on CP? is
given in [5]. The quadratic form (2.7) is given by £2 = 21/3(24cy) and the warp factor (2.8)

7 7 A2

56 : eoid ie 2oam (X 5(X8)?
—3——. Th t fell d A=1 = 1.
2%><3%(2+02g)% e equation of ellipsoid 18 6v3 + o3

Let us find out the eigenfuction Y (y™) of the differential operator £

is given by A =

LY (y™) = —m*Y (y™). (3.8)

Then the equation (3.4) leads to the equation of motion of a massive scalar field in AdS,
as follows:

O4® (2", r) — m*®(zH,7) = 0. (3.9)

Therefore, the 11-dimensional minimally coupled scalar provides a tower of KK modes
which are all massive scalars (3.9) with masses m? determined by the eigenvalues of the
above differential operator L.

Let us recall that the Go symmetry is the isometry group of the metric. The isometry
of round S8 only is given by SO(7) which contains G5 as a subgroup and the Killing vector
associated to the Go symmetry is given by

K= K04 = [ XP(T") pa — XO(T") ac] 04, (3.10)

where A, B = 1,2,---,7 for rectangular coordinates, a = 1,2,--- , 14 for adjoint indices,
and T'® are traceless antihermitian matrices and the generators of GGo. The dimension of Go



is 14. The explicit form of these is given by (A.4) and (A.5) of appendix A. We have checked
that the metric g7, (3.6) has vanishing Lie derivative [25] with respect to the Killing vec-
tor fields K. That is, K*“0pg!,, + (OmKP“)gl, + (0. KP*) g}, = 0 where K = K “07 =
9gp P01, Note that in this check, we need to work with the angular coordinates using the
chain rules between the rectangular coordinates and angular coordinates (3.7): after intro-
ducing the radial coordinate and obtaining the Jacobian, this radial coordinate is set to one.

In an irreducible representation of G labeled by the Dynkin labels (A, i), the quadratic

Casimir operator of G

14

Co=) (K" (3.11)
a=1
has eigenvalues [26, 27]
2 1o 5
Co(A\ ) =—16( A +§,u +)\,u+3)\+§,u , (3.12)

for (\, p) representation. Note that 3 (7%)2 = —8. The explicit form for (3.11) is given
by (A.2) of appendix A.

The spin-2 massive N/ = 8 supermultiplet [25] at level n is characterized by the SO(8)
Dynkin labels (n,0,0,0), this breaks into the SO(7) Dynkin labels (0,0,n), and finally the
massive multiplets of N' =8 forn = 1,2, - -, are decomposed into (0,0)&(0,1)&---$(0,n)
under the Gy symmetry. In particular, one has, with the help of [28],

O(8) — SO(7) — Go,
(1 0,0,0) — 8(0,0,1) — 1(0,0) @ 7(0,1),
5,(2,0,0,0) — 35(0,0,2) — 1(0,0) & 7(0,1) & 27(0,2),
112,(3,0,0,0) — 112/(0,0,3) — 1(0,0) & 7(0,1) & 27(0,2) & 77'(0, 3),
) —

(n,0,0,0) — (0,0,n) — (0,0) & (0,1)--- @ (0, n). (3.13)

Then the relevant eigenvalues for quadratic Casimir from (3.12) when A = 0 are given by

16

C2(0Hu’) - T3

K (e +5). (3.14)

Note that the factor p (u + 5) occurs in the quadratic Casimir operator of SO(7).

What are the corresponding eigenfunctions? It is well-known that the scalar spheri-
cal harmonic for D-sphere SP is characterized by each independent component of totally
symmetric traceless tensor of rank n. Namely, they are linear combinations of products of
u factors of X4’s

Yiou (X4, A#8)=cOM  xixi... xin (3.15)

11920y

where C}| (0’“ ) SPRLE! (0, u1)-tensor independent of the X4’s and is symmetric in iyig - - - i - Fur-

thermore they are traceless in the sense that C\%) . §imin = for any 1 <m,n < u [29].

11020y



Since Cy doesn’t act on f(See also (A.1) or (A.2)), one multiplies the expression (3.15) by
any function of # or X®. Let us write down the eigenmodes as

Y(y™) = Yo (XA, A+ 8)H(u), u = cos? 6. (3.16)

In the tensor product of 7 x 7 = [1® 27]s @ [7 @ 14]4 between the defining representation
7 = (0,1) of Gy, the tensors transforming as the symmetric part are given by [26]

1
Y1004 = ?5AB(SCDVCWD,

1 1
Yor0248 = |3 (6acdBD +dapdBC) — ;5AB5CD vew?, (3.17)

where V4 and WP transform as 7 of G5 and have nothing to do with X4. Then one sees
that Ya7(0,2)ap plays the role of Cgog) in (3.15) because Ya7(9 2)4p is symmetric under the
indices A and B and traceless due to the fact that 2174:1 Ya7(0,2)44 = 0 from (3.17).1

Now let us solve the differential equation (3.8) with (3.16). The differential opera-
tor (3.5) can be computed explicitly and it is given in the appendix A (A.1) in terms of
the angular variables. Also this differential operator can be expressed in terms of the rect-
angular coordinates via (A.2) and (A.3). Since the quadratic Casimir operator has explicit
eigenvalues of (3.14), it is obvious that the eigenvalue equation (3.8) can be solved more
easily by using the rectangular coordinates rather than the angular coordinates. When
C2 acts on Y (y™) in (3.16), the only nonzero contributions arise if it acts on ¥{q ,)(X 4)
because Cy doesn’t act on u as before.

On the other hand, the remaining other piece (A.3) of £ consisting of the second
derivative and first derivative with respect to  or u can act on either Y{q ,)(X Ay or H(u).
The former arises because the X4(A = 1,2,---,7) depends on the variable § from (3.7).
Since Y(g,,) (X 4) is written in terms of rectangular coordinates, it is convenient to rewrite
the remaining operator in terms of rectangular coordinates also using the chain rules, as
in (A.3). One can compute the action of this remaining operator on Y{q (X 4) explicitly.
Moreover when the remaining operator acts on the function H(u), then one obtains the
second and first derivatives of H(u) with respect to w. In this way, one performs these
computations for = 0,1,2,3 and expects the final expression for general . Actually we
have checked this for ;4 = 4. It turns out that the eigenvalue problem leads to the following

differential equation

(1 —wuH"+[c—(ay +a_ +1V)u]H —ara_H =0, (3.18)

! Although the full solution preserves the G2 symmetry, the metric preserves a bigger SO(7) symmetry
from (2.6). Since the KK modes see only the metric background, one can take the different approach by
using the fact that the Laplacian eigenvalue problem on S° is known. The Killing vector associated to the
SO(7) symmetry can be obtained from (3.10) by taking 21 generators of SO(7), that are 7 x 7 matrices, as
(T5)pq = 5(ip0jq — Siq0jp) With the property EZ’jZI(Tij)Q = —2. Then one can check that the quadratic
Casimir operator of SO(7) corresponding to (3.11) is identical to the expressions of inside bracket in (A.2).
Also the eigenfunctions (3.15) can be factorized by sin* Y, where Y, is so-called SO(7) spherical harmonics
which depend on (01, a1, a2, a3, 05,0s). When we act the above quadratic Casimir of SO(7) on this spherical
harmonics Y, we get —u(p + 5)Y,., as usual. We thank the referee for raising this point.



where the primes denote the derivatives with respect to u and we introduce the
following quantities

9, /36V2 31
1 72 A 1 25v/5 1
=— | 9+3uty/6p>+30u+81+—m?2L? == — = 3.19
=+ 6<+u\/u+u+ +m ) c=3, 7 7 (3.19)
1

The complicated quantity 362‘5{_\2/?5’4 is the superpotential at the IR critical point and from
36\/53%

the domain wall equation, the scale factor A(r) behaves as A(r) ~ %ﬁr at the IR end

of the flow [12] and we introduce a new quantity L above in the spirit of [11]. Note that the

contribution from Cy occurs only in the term of H in (3.18) while the contributions from the

remaining operator occur all the terms in H”, H' or H of (3.18). We have also checked that

the eigenvalue equation (3.8) holds (3.18) when £ and Y (y™) are written in terms of angular

coordinates via (A.1), (3.15), (3.16) and (3.7): tracelessness of (0, ut) tensor is crucial.
The solution for (3.18) which is regular at v = 0 is given by

H(u) - 2F1 (a—a a+; C; ’LL) ) (320)
which is convergent for |u| < 1 for arbitrary a_,ay and ¢. When a_ = —j for nonnegative
integer j, this hypergeometric function becomes a polynomial in u of order j. Then the
KK spectrum of minimally coupled scalar can be obtained by putting a_ = —j in (3.19)
and solving for m?. Then the mass-squared in AdS,; can be written, in terms of 1 and j, as

5
2 ) - , 2
m” = —— (127" + 125u + 365 + p” 4+ 8u) . 3.21
a2 ji+ 367 + p” + 8p) (3.21)

Plugging (3.20) into (3.16) together with (3.19), one obtains the full eigenfunctions
on (1T xi 1
Y(y™) =G, (H X““) 2 I <—j, S+ptiisgs (X8)2> - (3.22)
k=1

In this case, the hypergeometric functions are polynomials and let us write down few cases
according to the KK excitation number j

J=0: Y™ ~ You(X),
J=1 Y Wm) ~ Yieu (XA [1- 20+ (XY,
F=2 YO ~ Yo (X |1 45+ (X 4 56+ (6 + 000!
F=3 YW ~ Vo8 |1 66+ 00X + 400+ )7+ ) (X!
- SO+ T s+ (323)

where A # 8. The appearance of hypergeometric function in the eigenfunction for the
7-dimensional Laplacian operator is not so special and one sees the similar feature in the
compactification of Q11! space [30].
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The dimension of the CFT operators dual to the KK modes (3.22) can be determined
from the usual AdS/CFT correspondence [2]

A(A = 3) = m2L2. (3.24)

The OSp(1]4) supermultiplets with spin-2 components are massless graviton multiplet(sg =
3) with D(3,2) denoted by Class 3 of [18] and massive graviton multiplet(sy = 3) with
D(Ey + %,2) where Ey > 2 denoted by Class 4 of [18]. As recognized in [12], the mass-
less graviton multiplet has conformal dimension A = 3(the ground state component has

dimension Ag = 5 and see the table 5 of [12]). This V" = 1 massless graviton multiplet
characterized by SD (g, %\1) originates from the N’ = 2 massless graviton multiplet char-

acterized by SD (2,1,0|2) where the element zero stands for U(1)g charge [31]. Similarly
N = 1 massive graviton multiplet SD (EO + %, %‘ 1) with Fy > 2 originates from the
N = 2 massive long graviton multiplet or massive short graviton multiplet.

Based on the findings (3.22), one can study the boundary operators dual to the KK
modes by (3.22). The theory has matter multiplet in seven flavors ®!, ®2 ... &7 trans-
forming in the adjoint with flavor symmetry under which the matter multiplet forms a 7
of Gg of the N = 1 theory [12]. The ®® is a singlet 1 of G5. The gauge theory conjectured
to be dual to the Go N = 1 supergravity background in this paper is a deformation of
ABJM theory [1] by a superpotential term quadratic in ®8. The gauge theory also has G5
symmetry where G5 symmetry corresponds to the global rotations of ®!,®2 ... &7 into
one another. One identifies the ®4 fields where A # 8 with the coordinates X4 (A # 8)
and ®® with the coordinate X® up to normalization. One can read off the dual operators
corresponding to each of the KK modes.

In table 1,2 we present a few of these modes and also provide the structure of the dual
gauge theory operators from (3.22). The branching rule for SO(8) into G+ is given by (3.13).
The quantum number p of Gy is characterized by the Dynkin label (0, u) as before. The
KK excitation mode j is nonnegative integer and this makes the hypergeometric funtion be
finite. The conformal dimension of dual SCFT operator is given by (3.24). Once the mass-
squared formula is used via (3.21), then this conformal dimension is fixed. Starting with the
N =1 SCFT operator denoted by ®,3, corresponding to the massless graviton multiplet,
one can construct a tower of KK modes by multiplying ®4(A # 8) for j = 0 modes. In
general, one expects that for general quantum number p of Go, the operator is given by
the product of ®,4, with p factors of ®(A # 8) where the p indices are symmetrized.
For nonzero j’s, the explicit form (3.23) of hypergeometric functions is useful to identify
the corresponding N/ =1 SCFT operators. For general j, there exists a polynomial up to
the order 24 in ®® multiplied by D3y

According to the observation of [14], there exists a supersymmetric RG flow from N' =1
Go-invariant fixed point to N' =2 SU(3) x U(1)g-invariant fixed point. One describes the

*In these three-dimensional SCFTs, there exist monopole operators [10] available for k& = 1,2 that
should be used to obtain the correct gauge invariant operators. In the same spirit of [11], we present
only the “schematic” expressions of the dual gauge theory operators which do not contain these monopole
operators. The corresponding A/ = 1 SCFT operators in Chern-Simons matter theory hold for the gauge
group U(2) x U(2) with k =1, 2.
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SO(8) Gs J A m?L> N =1 SCFT Operator
1(0,0,0,0) 1(0,0) [0 3 0 Doy
8,(1,0,0,0) 1(0,0) |1 5 10 Dopy [1— 8(D°)?]
7(0,1) | 0| i(6+v66) | L Dap, 4
35,(2,0,0,0) | 1(0,0) |2 | 2(3+V109) | 25 Doy [1—20(9%)2 +40(X3)7]
7(0,1) | 1| 2(6+v266) | L2 Doy @4 [1— 10(9%)?]
27(0,2) | 0| £(9+v231) | 2 D o3, ADD)
112,(3,0,0,0) | 1(0,0) |3 | 2(1++21) 45 | Dopy[1—36(%)?+168(0%)* — 528 (9%)0]
7(0,1) | 2| 2(6+v546) | 22 Doy @4 [1— 24(9%)? + 56(9%)"]
27(0,2) | 1| $(9+V771) | 12 Dop, PADE) [1— 12(9%)?]
77'(0,3) | 0| $(6+v146) | 22 D5, OADED)

Table 1. The first few spin-2 components of the massive(and massless) graviton multiplets. For
each multiplet we present SO(8), Gz Dynkin labels (3.13), the KK excitation number j, the dimen-
sion A (3.24) of the spin-2 component of the multiplet, the mass-squared m2L? (3.21) of the AdSy
field and the corresponding dual SCFT operator.

branching rules [28] of G2 into SU(3) as follows:

G2 — SU(3),
1(0,0) — 1(0,0),
7(0,1) — 3(1,0) & 3(0,1) & 1(0,0),
27(0,2) — 6(2,0) ® 8(1,1) ®6(0,2) @ 3(1,0) & 3(0,1) @ 1(0,0),
77'(0,3) — 10(3,0) & 15(1,2) ©10(0,3) & 15(2,1) © 6(2,0) & 8(1,1) 4 6(0,2)
®3(1,0) ® 3(0,1) @ 1(0,0),
(0,1) = [(1,0) @ (p—1,1) @ (0, )] & [(n—1,0) & (1 —2,1) & -+~ (0, — 1)]
@®---@[(1,0) @ (0,1)] ® (0,0), (3.25)

where the dimension [26] of G5 representation (0, p) is given by 135 [T, (e + 1) (20 + 5).
At the level of © = 0 excitation, this is the familiar massless graviton multiplet in AdSy
and corresponds to the stress energy tensor in the SCFT. In the standard N' = 2 stress

(0)

energy superfield 7:12 in the notation of [11], the components are given by a vector boson

that is related to U(1)r symmetry, two fermionic supersymmetry generators, and energy

(0)

momentum tensor. Then we denote DaTﬁS corresponding to the N' = 1 massless graviton
multiplet by ®,3, which has N' = 1 supercurrent and the energy momentum tensor in
components [12]. Here D, is an A/ = 1 superderivative. As explained before, the massless
graviton multiplet <80 =3mN =1 notation) with D(3,2) is classified by the Class 3 of [18]

and has conformal dimension A = 3<the ground state component has dimension Ag = %)

Now let us describe the massive graviton multiplet. At the level of ;1 = 1 excitation,
the 7 representation of G breaks into three different representations of SU(3) as above.
In N = 2 theory, 3 representation of SU(3) corresponds to ZA where A = 1,2,3 and its
complex conjugates 3 representation of SU(3) corresponds to Z4 [8-11]. Then the N’ =1

SCFT operator goes to the N =2 SCFT operators [11] schematically as follows:
Pop, @t — T.) [ZA @ Za @ (2 + 24)], (3.26)
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where Z% and Z, are singlets of SU(3) and the sum of these corresponds to the N' = 1
superfield ®7. According to the observation of [11], the last representation of (3.26)
belongs to the N/ = 2 short graviton multiplet. The other representations of (3.26) belong
to the N' = 2 long graviton multiplet. For j = 1 case in the singlet 1 of G5, the structure
of N'=1 SCFT operator can be obtained from the expression of hypergeometric function
for j =1 case (3.23).

At the level of i = 2 excitation, the 27 representation of G5 breaks into six different
representations of SU(3). Then the A/ = 1 SCFT operator goes to the N' = 2 SCFT
operators [11] with the same order for SU(3) representations (3.25)

_ 1 _ _
D5, 010B) Tofg) [Z(AZB) ® <ZAZB — géngzC> @ Z(4Zp)
QZAZ 4 ZY B ZA(Z + Z) @ (24 + Zl)?} . (3.27)

The right hand side represents each SU(3) representation, term by term, in (3.25) exactly.
The second representation can be obtained from the tensor product of 3 and 3 which
leads to 8 and corresponds to the massless vector multiplet. On the other hand, the
N = 1 massless vector multiplet has conformal dimension A = 2 for spin-1(the ground
state component has dimension Ag = 3 and see the table 5 of [12]). This A/ = 1 massless
vector multiplet characterized by SD (%, %‘ 1) originates from the N' = 2 massless vector
multiplet characterized by SD(1,0,0]|2) [31]. The last three representations of (3.27) are
obtained from (3.26) by multiplying (Z4 + 54). The last representation of (3.27) belongs
to the NV = 2 short graviton multiplet [11]. The first three representations can be obtained
from the fact that the product ®“A®%) has three possible cases: two products of Z4s,
two products Z 4’s and the product of Z4 and Z4. For j = 1,2 cases in the 7,1 of Go,
the structure of N' = 1 SCFT operator is read off from the expression of hypergeometric
function for j = 1,2 cases (3.23).

Finally, at the level of u = 3 excitation, the 77’ representation of G breaks into ten
different representations of SU(3). Then the NV = 1 SCFT operator goes to the N' = 2
SCFT operators [11]

. 1 . .
Pop, @100 — T [Z(AZBZC) o (z(AzB)zC - 55&23)2D2D> ®Z4Zp20)
_ 1 _ _
@ <Z(AZB)ZC - 35(5‘23)21721)) o 2AzZB)(24 + Z))
_ 1 _ _ _ _
® (zAzB — géngzC> (2 +24) @ Z(aZp)(2* + Z4)
@22 '+ 2020 ZA(2 + Z)? @ (2' + 20)?] (3.28)

The second representation in the right hand side can be obtained from the tensor product
of 8 and 3 which leads to 15. The first four representations can be obtained from the fact
that the product ®AdEPHC) has four possible cases: three products of Z4’s, three products
of Z4’s, the product of two Z4s and Z 4 and the product of ZA and two Z 4’s. The last
six representations of (3.28) are obtained from (3.27) by multiplying (24 + Z,). The last
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representation of (3.28) belongs to the AN/ = 2 short graviton multiplet [11] and the other
representations of (3.28) belong to the N' = 2 long graviton multiplet. For j = 1,2, 3 cases
in 27,7,1 of Gg, the structure of N' =1 SCFT operator is read off from the expression of
hypergeometric function for j = 1,2, 3 cases (3.23).

4 Conclusions and outlook

We computed the KK reduction for spin-2 excitations around the warped 11-dimensional
theory background that is dual to the A/ = 1 mass-deformed Chern-Simons matter theory
with G symmetry. The spectrum of spin-2 excitations was given by solving the equations of
motion for minimally coupled scalar theory in this background. The AdSy mass formula of
the KK modes is given by (3.21) and the corresponding wavefunctions on the 7-dimensional
manifold are given by (3.22). The quantum number p for Gy representation and the KK
excitation number j arise in this mass formula. We calculated the dimensions of the dual
operators in the boundary SCFT via AdS/CFT correspondence and in table 1 we presented
the summary of this work.

In the classification of [18], the massive multiplets for lower spins arise also. For
example, the OSp(1]4) supermultiplets with spin—% components are massless gravitino
multiplet(sg = 1) with D(2, 2) denoted by Class 3 and massive gravitino multiplet(so = 1)
with D(E0+§, 5) where Ey > 2 denoted by Class 4. The N' = 1 massive gravitino multiplet
SD(Ep,1|1) with Ey > 2 originates from the N/ = 2 massive long gravitino multiplet. The
massive N' = 8 supermultiplet [25] at level n for spin—% is given by SO(8) Dynkin labels
(n,0,0,1)®(n—1,0,1,0). Definitely this provides the gauge theory operators dual to lower
spin excitations. However, one should find out the right form for the perturbations that
decouple from all other perturbations.
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A The differential operator, quadratic Casimir operator of G5, and the
generators of G5

The differential operator acting on 7-dimensional ellipsoid is given by (3.5) and this can be
written, from the metric (3.6) and the warp factor (2.8) with (2.11) and (2.7), in terms of
angular coordinates as follows:

2\ ~3/4 18 108
(—) 3758, = gag —cps, L0

5 5
6 - —242 -2 —242 —1
—1—3(2—1—029) S0 891—1—439 S9g Oay 484, g, 89 05, 13084, o, Opg
—8cals;123(;123;628a28a3 —43&12 (cg‘é1 —s(;f) 091 S0 2202 —4097123;628043895

+ 69_1289_62635 + (9926 + (1 + 2c99,) 59_1159_6259_11891 + 45;1 Cay 59_6289_126(11
108

9 _
5 —c,l s, 0p + — (2 + ca9) 85 %Ca, (A.1)

18
= 9+
5% T 40
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where the quadratic Casimir operator (3.11) with (3.10) can be written as

7 7 7
Cr = = Y (XK -2 > X'X0yiOx; —6Y X'0xi | (A2)

i.j=1,i#] i j=1,j>i i=1

So it is obvious that the action of this Cy on the function H(u) vanishes because the
right hand side of (A.2) doesn’t contain any differential operator on the variable X®. The
remaining parts of (A.1) can be written in terms of rectangular coordinates as follows:

7 7
05 + 65 sy 09 = cjsy Y (X)?0%: =Y X' XP0xi0xs + 550%s
1=1 i=1

7
+(-1+ 703) 39_2 Z X'0yi — TspcoOxs. (A.3)
i=1

The first and fourth terms of (A.3) contribute to the terms in linear of H, the second and
last terms contribute to the terms of H’ and the third term contributes to the terms of
H"” in (3.18).

The generators of Gy can be chosen as real 7 x 7 matrices. The explicit realization of
the generators was presented in [32]. The embedding of G5 in the group SO(7) is generated
by the 14 elements T%,a =1,2,--- ,14:

00000 0 O 000 0 00 O
00000 0 O 000 0 00 O
00000 0 O 000 0 00 O
™=(000000 -1, ™=|(0000010 |,
00000-1 0 000 0 00 -1
00001 0 O 000-100 O
00010 0 O 000 0 10 O
0000 0 0 O 00 0000O0
0000 0 0 O 00 00001
0000 0 0 O 00 0O0O01O0
™=(0000-10 0 |, =100 00000],
0001 0 0 O 00 0000O
0000 0 0-1 00 -10000
0000 010 0-1 00000
00 000O0O 00O0O0O0O0O
00 000-10 0000100
0000001 000-1000
™=[0000000], ™=(0010000],
00 000O0O 0-10 0 000
01 0000O0 000O0O0O0O
00-100 0 O 000O0O0O0O
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000 0 0O0O

000-10 00
0000 —100
T"=10100 0 00 |, (A4)
0010 000
0000 000
0000 000
and
000 0000
00-2 000 0
L0200 0000
TS:% 000 0100 |, (A.5)
000 —100 0
000 0 00-=1
000 0010
0-200000 0-2000 0 0
2000000 000000 O
00000O0O 200000 0
o~ L 00000O0T1], po_ L 00000-10 |,
\/§00000—10 \/3000000—1
0000100 000100 O
000-1000 000010 O
000 —200 0 00 00-200
000 000-1 00 00010
000 0010 00 00001
- L 200 0000 |, 2 L 00 00000],
\/gooooooo \/52000000
00-1000 0 0—-1 00000
010 0000 00 —-100 00
0000 0 —20 00000 0-2
0000 -1 00 0001000
000-10 00 0000-100
-1 10010 o0 00|, -1 19100000 :
\/§0100000 \/30010000
2000 0 00 0000000
0000 0 00 2000000

where the two matrices 7% and T® generate the Cartan subgroup of Ga. There
exist six SU(2) subgroups generated by the elements (T, 72 73), (T4,7T° (V318 +
T?’)), (T6, T7, %(—\/ETS + T?’)), (\/§T9, \/§T10, \/§T8), (\/ngl’ \/§T12, %(—\/gTS + 3T3))
and (v3T'3, /3T, 1(v/3T8+3T?)) from the fundamental commutation relations between

these generators [33].
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